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Scale disparities and magnetohydrodynamics
in the Earth’s core

By K eke Zhang1 an d David Gubbins2

1School of Mathematical Sciences, University of Exeter, Exeter EX4 4QJ, UK
2School of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK

Fluid motions driven by convection in the Earth’s ®uid core sustain geomagnetic
­ elds by magnetohydrodynamic dynamo processes. The dynamics of the core is crit-
ically in®uenced by the combined e¬ects of rotation and magnetic ­ elds. This paper
attempts to illustrate the scale-related di¯ culties in modelling a convection-driven
geodynamo by studying both linear and nonlinear convection in the presence of
imposed toroidal and poloidal ­ elds. We show that there exist three extremely large
disparities, as a direct consequence of small viscosity and rapid rotation of the Earth’s
®uid core, in the spatial, temporal and amplitude scales of a convection-driven geo-
dynamo. We also show that the structure and strength of convective motions, and,
hence, the relevant dynamo action, are extremely sensitive to the intricate dynamical
balance between the viscous, Coriolis and Lorentz forces; similarly, the structure and
strength of the magnetic ­ eld generated by the dynamo process can depend very
sensitively on the ®uid ®ow. We suggest, therefore, that the zero Ekman number
limit is strongly singular and that a stable convection-driven strong-­ eld geodynamo
satisfying Taylor’s constraint may not exist. Instead, the geodynamo may vacillate
between a strong ­ eld state, as at present, and a weak ­ eld state, which is also
unstable because it fails to convect su¯ cient heat.

Keywords: geodynamo; Taylor constraint; Earth’s core; magnetoconvection

1. Introduction

The primary dynamics of the Earth’s ®uid core is controlled by (1) rapid rotation,
(2) small viscosity, (3) thermal or compositional convection, and (4) a self-generated
magnetic ­ eld (Mo¬att 1978; Busse 1978; Gubbins & Roberts 1987; Roberts &
Soward 1992; Hollerbach 1996; Fearn 1997). Other details such as compressibil-
ity, variable rotation, boundary conditions, or the origin of buoyancy (thermal or
compositional) are of secondary importance to the dynamics on the long (magnetic-
di¬usion) time-scale, for which the Coriolis force must be balanced primarily by four
forces,

2­ u =
1rp + g0r +

1
(r B ) B + r2u; (1.1)

where r is the position vector, the mean density of the Earth’s liquid core, g0

the acceleration of gravity, ­ the angular velocity of the Earth, the deviation of
temperature from the adiabatic, the kinematic viscosity, the magnetic perme-
ability, the thermal expansion coe¯ cient, u the velocity ­ eld, and B the generated
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900 K. Zhang and D. Gubbins

magnetic ­ eld. In equation (1.1), 2­ u is the Coriolis force, (rp)= the pres-
sure force, g0r the buoyancy force, (r B ) B= the magnetic (Lorentz)
force, and r2u the viscous force. The inertial force (@u=@t + u ru) has been
neglected because its contribution on the magnetic di¬usion time-scale is small.
On the shorter, century-long, advection time-scale, however, inertia may play an
important role in providing an extra way to relax the rotational constraint or for
a dynamo solution to remain close to the Taylor constraint (see equation (1.2)
below). The centrifugal force, ­ (­ r ), has been absorbed into the modi­ ed
pressure, p.

The small viscosity makes equation (1.1) very di¯ cult to treat, and two di¬erent
approaches have been developed to solve it. The ­ rst assumes that the zero viscosity
limit, ! 0, is non-singular. Setting = 0, integrating the ^¿ -component of (1.1)
over the surface of a geostrophic cylinder G(s) with radius s and axis parallel to
that of rotation, and using the incompressibility condition r u = 0, gives Tay-
lor’s constraint (Taylor 1963; see also Jault 1995; Fearn 1998; Walker & Hollerbach
1999):

Z

G(s)

[(r B ) B ] dS = 0: (1.2)

The magnetic ­ eld must satisfy Taylor’s constraint for (1.1) to hold without viscos-
ity; if such a solution exists it is called a strong-¯eld dynamo. There have been many
attempts to obtain a convection-driven strong-­ eld dynamo where viscosity plays
at most a minor role in boundary layers (see, for example, Fearn & Proctor 1987;
Walker et al . 1998), but all have failed.

The second approach is to replace the small viscosity of the Earth’s core by
a much larger one, sometimes with an arti­ cial form of hyperviscosity in which
small length-scales see a higher e¬ective viscosity. This has resulted in consider-
able progress (see, for example, Glatzmaier & Roberts 1995a; b, 1996a; b; Kuang &
Bloxham 1997; Jones et al . 1995; Sarson & Jones 1999). The resulting dynamos
are able to generate magnetic ­ elds and ®ows of the right strength and morphology
to model the Earth; they also have the potential to explain geomagnetic reversals.
However, they are in the wrong regime for the Earth, with viscous forces playing
a signi­ cant dynamical role. This makes comparing the numerical simulations with
observations hazardous: an Earth-like polarity reversal may appeal, but we learn
little about the Earth if the force balance in the model fails to match that in the
core.

At ­ rst glance, the strong-­ eld dynamo presents the most attractive model of
magnetohydrodynamics in the Earth’s core: it has a large-scale convective ®ow, a
strong toroidal magnetic ­ eld, nearly negligible viscous dissipation, and an e¯ cient
thermal dynamo engine. In practice, such dynamos fail in a number of ways (see, for
example, Fearn 1998), most instructively, when the dynamo equations are integrated
in time starting from initial conditions provided by a magnetoconvection calcula-
tion. In magnetoconvection, the ­ eld is imposed; once time integration starts, the
imposed ­ eld is removed, leaving only that generated by the dynamo process. One of
us (K.Z.) has conducted a number of such numerical experiments with similar results.
The strength of the initial magnetic ­ eld gradually decreases over a few magnetic
di¬usion times and, at the same time, small-scale convective motions become dom-
inant. Dynamo action subsequently collapses completely because the amplitude of
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Scale disparities in the geodynamo 901

convection drops below the critical value; sometimes even the convection shuts o¬
because the Rayleigh number falls below the critical value. Increasing the viscosity,
or introducing hyperdi¬usivity, prevents this collapse because the additional viscos-
ity prevents dominance of small-scale convection at times when the ­ eld is weak. The
arti­ cially high viscosity is, therefore, responsible for sustaining the dynamo action,
hardly what we imagine happening in the core.

The ­ rst aim of numerical modelling is not to reproduce exactly the right val-
ues of the parameters in the core, but to approach the correct dynamical regime.
We have so far been unable to do this for the geodynamo because of the small
viscosity, yet magnetoconvection calculations can be extrapolated to very small vis-
cosity quite realistically. Why is the dynamo calculation so very much more di¯ -
cult than magnetoconvection with the same imposed parameters? We argue here
that it is because the self-generated ­ eld strength can vary, leading to huge ranges
of time-, length- and amplitude scales that are very hard to deal with numer-
ically. The problems at small Ekman number are, therefore, much more subtle
than simply resolving boundary layers or achieving exactly the right scales for the
Earth.

We suggest here that the strong-­ eld dynamo is in fact unstable and prone to
collapse into a weak-­ eld state similar to non-magnetic convection. The argument
is based on results from magnetoconvection extrapolated to the very small values
of viscosity found in the core; it receives some support from recent palaeomagnetic
evidence that the Earth’s magnetic ­ eld collapses and almost reverses many times
between full polarity reversals (Gubbins 1999), and that its amplitude varies dra-
matically on a millennium time-scale (see, for example, Channel, this issue).

2. Mathematical formulation

To a ­ rst approximation, the dynamics of the Earth’s liquid core is governed by the
following equations of motion, heat and induction in a spherical shell of electrically
conducting Boussinesq ®uid with inner radius ri and outer radius ro:

@u

@t
+ u ru + 2 k u =

1rp + g0r +
1

(r B ) B + r2u; (2.1)

@

@t
+ u r + u rTs = r2 ; (2.2)

@

@t
B + u rB = B ru + r2B ; (2.3)

where k is a unit vector parallel to the axis of rotation, Ts = r2=2 is a basic unstable
temperature produced by the uniform distribution of heat sources (Chandrasekhar
1961; Roberts 1968), and t is time.

Equations (2.1){(2.3) can be non-dimensionalized as follows:

r ! dr; t ! td2= ; ! d2; b ! B0b; (2.4)

where d = (ro ri) and B0 is a typical amplitude of the generated magnetic ­ eld. In
dimensionless form, the governing equations become

EPr 1 @u

@t
+ u ru + k u = rp + RE r + (r B ) B + Er2u;

(2.5)
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r2 @

@t
= u r r u; (2.6)

r2 @

@t
B = Rm (u rB B ru): (2.7)

The Rayleigh number R, Ekman number E, Elsasser number , and magnetic
Reynolds number Rm are de­ ned, respectively, as

R =
g0d4

; E =
2 d2

; =
B2

0

2
; Rm =

U d
; (2.8)

where U is a typical amplitude of the convection-driven ®ow.
Consider solutions for the magnetoconvection problem, in which a magnetic ­ eld is

imposed on the system. In magnetoconvection, the Elsasser number is determined
by the strength of the imposed magnetic ­ eld, whereas for the full dynamo problem,
the magnetic ­ eld is self-generated and its typical strength is determined by the
solution. The Elsasser number could, therefore, be dispensed with (by setting B0 =p

2 ) in the dynamo problem, but this is not helpful for magnetoconvection
because we wish to study the response of the system to di¬erent amplitudes of the
imposed magnetic ­ eld.

Next, consider solutions to the kinematic dynamo problem, in which the ®uid veloc-
ity is imposed. The magnetic Reynolds number Rm is determined by the strength of
the imposed velocity, whereas for the full dynamo problem it is determined by the
solution. In the kinematic dynamo problem, we wish to determine the ®ow speed
required to generate magnetic ­ eld, making Rm the important external parameter,
but, like the Elsasser number, it can be dispensed with for the full dynamo problem.
With the scaling for the velocity used to form the dimensionless equation of motion
(2.5), the ®ow strength is U = =d and the magnetic Reynolds number (2.8) becomes
the Roberts number,

Rm = = = q; (2.9)

a property of the ®uid.
The kinematic dynamo and magnetoconvection are parallel simpli­ cations of the

full dynamo problem: in the ­ rst, u is ­ xed and (2.3) is solved for B , whereas in the
second, B is ­ xed and (2.1){(2.2) are solved for u. Both problems can be expected
to reveal some of the character of the full dynamo problem, but they di¬er from each
other in important respects. The kinematic problem linearizes equation (2.3) (in B ),
yet it remains the correct equation for the full dynamo, whose solution must still
satisfy (2.3). Equations (2.1){(2.2) remain nonlinear even when B is ­ xed; many of
the results quoted are for marginal or weakly nonlinear convection in which the ®ow
is weak and the nonlinear terms small. No such restriction applies to the kinematic
dynamo problem.

In this paper, we simplify the equations further by taking the Roberts number to
be unity and the Prandtl number to be in­ nite:

q = = 1; Pr = = 1: (2.10)

Neither choice applies to the core directly, but we justify the ­ rst because turbulence
is expected to act to equalize the di¬usivities and the second because small Prandtl
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Scale disparities in the geodynamo 903

number ®ow is characterized by rapid time variations that are not observed in the
geomagnetic record. We set = ri=ro = 0:4 for our analysis throughout the paper.

The buoyancy-driven magnetohydrodynamic problem involves solving equations
(2.5){(2.7) and

r u = 0; (2.11 a)

r B = 0; (2.11 b)

together with appropriate boundary conditions for u, B and . We assume that the
inner and outer bounding spherical surfaces of the Earth’s core are stress free and
impenetrable,

@(u =r)

@r
=

@(u =r)

@r
= ur = 0; (2.12)

where (ur; u ; u ) are the components of velocity in spherical polar coordinates.
Stress-free conditions give weaker boundary layers than rigid boundary conditions:
note that the type of the velocity boundary condition does not make a leading-order
contribution when E is su¯ ciently small (Roberts 1965; Zhang & Jones 1993; Fearn
1979). We also assume that both inner core and mantle are perfectly electrically
insulating and thermally conducting, which yields

r (r B ) = = 0; [B ] = 0; (2.13)

on the inner and outer bounding spherical surfaces, where [ ] denotes the jump across
the bounding surfaces. This model does not include the potential stabilizing e¬ect of
an electrically conducting inner core (Hollerbach & Jones 1993, 1995). The numerical
methods employed are described in Gubbins & Zhang (1993), Gubbins et al . (2000a),
and papers cited therein.

In order to provide an example of the scaling disparities, we have solved four dif-
ferent related convection problems in this paper for various values of E, R and : the
problems of linear and nonlinear convection with = 0 governed by equations (2.5),
(2.6) and (2.11 a); and the problems of linear and nonlinear convection in the pres-
ence of an imposed magnetic ­ eld governed by equations (2.5){(2.7), (2.11 a) and
(2.11 b). We also use solutions to the kinematic problem obtained by solving (2.7)
with a parametrized ®ow containing some of the characteristics of core convection to
illustrate the variation in ®ow speed required to generate magnetic ­ eld from ®ows
with slightly di¬erent forms.

3. Spatial, temporal and amplitude scales with a weak ¯eld

When the dynamic e¬ect of a magnetic ­ eld is su¯ ciently small, the Lorentz force
may be neglected, decoupling the equations of motion and induction. There are
then two fundamentally di¬erent types of convection. The ­ rst takes the form of
thermal inertial waves, which oscillate so fast that viscosity may be neglected to
leading order to give the Poincaŕe equation in a rotating spherical system (Zhang
1994, 1995b). Viscosity usually plays a purely dissipative role and the limit E ! 0 is
regular. Only at the next order of approximation does the buoyancy force maintain
convection against weak viscous dissipation, which takes place in Ekman boundary
layers. However, this type of convection, which is associated with small Prandtl
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number, is unlikely to be important or relevant to dynamo action in the Earth’s core
simply because of the short time-scale of the convective ®ow.

We shall focus on the second form of convection (Roberts 1968; Busse 1970; see also
Jones et al . 2000), associated with large Prandtl number. It is slowly oscillatory and
the inertial terms do not enter into the leading-order problem. The most signi­ cant
feature of the convection is the role of viscosity: it provides the necessary frictional
forces to o¬set that part of the Coriolis force 2 k u that cannot be balanced by
the pressure gradient rp= . Convection cannot take place without a large frictional
force; in this sense, the role of viscosity is inverted from the usual one of inhibiting or
preventing convection (by providing a sink for potential energy that would otherwise
be converted to kinetic energy), to an essential force that allows convection to occur
by breaking the Proudman{Taylor constraint imposed by the rotation.

Application of the operator r r to (2.5) yields the radial component of the
vorticity equation

r
@u

@z
= Er r r r u; (3.1)

where (s; ; z) are cylindrical polar coordinates with z along k. The Proudman{
Taylor theorem requires changes of u and to be small at low viscosity, so that
@=@z is O(1). The primary balance in the equation of motion is between pressure
and Coriolis forces, but in the vorticity equation there is no pressure and the balance
must be struck with the viscous forces. This is achieved at small Ekman number
by small length-scales in the s and directions. (r )3 may be taken to be O(m3),
where m is the azimuthal wavenumber of convection. Equation (3.1) shows that the
limit E ! 0 is singular because the wavelength of the convective ®ow goes to zero:

m = O
2 d2

1=3

= O(E 1=3); as E ! 0: (3.2)

Equation (3.2) is one of the fundamental asymptotic laws that provide a basic frame-
work for understanding convection in a sphere.

Note that equations (3.1) and (3.2) are valid at in­ nite Prandtl number regardless
of the size of the Rayleigh number R. Thus, provided no small scales develop in
the z-direction, the presence of large wavenumbers (small scales) will persist even
in a strongly nonlinear regime. The fundamental laws were ­ rst derived by Roberts
(1968) from his asymptotic theory for a rapidly rotating sphere,

Rc = O(E 4=3); mc = O(E 1=3); !c = O(E 2=3); as E ! 0; (3.3)

where Rc is the critical Rayleigh number, the smallest value of the Rayleigh number
at which convection can take place, and mc and !c are the corresponding wavenumber
and frequency of convection (see also Soward 1977; Zhang 1991, 1992; Jones et al .
2000).

In (3.3), the coe¯ cients of the asymptotic laws are functions of the Prandtl num-
ber Pr. It was shown by Busse (1970), based on a local asymptotic analysis, that
convection with symmetry

(ur; u ; u )(r; ; ) = (ur; u ; u )(r; ; ); (r; ; ) = (r; ; );
(3.4)
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Table 1. An example of the scale disparities for E = 10 5

(The critical Rayleigh number Rc , the corresponding azimuthal wavenumber mc and the fre-
quency !c of convection in a rapidly rotating spherical shell with or without the e® ect of a
magnetic ¯eld for ri =ro = 0:4. The parameter P is related to the form of the basic magnetic
¯eld in the magnetoconvection problem de¯ned by (4.1). The time-scale of the frequency is
based on the magnetic di® usion time-scale with q = 1.)

Pr; q Rc !c mc P

1 ; 1 +7:52 106 923: 36 0.0 0

1 ; 1 +9:59 105 +0:18 2 8.0 0

1 ; 1 +1:14 106 +8:01 1 10 0

1 ; 1 1:54 106 0:45 1 10 0.17

(a) (b)

Figure 1. The small spatial scale and short time-scale convection in a rapidly rotating spherical
° uid shell with ri=ro = 0:4 at E = 10 5 with no magnetic ¯eld ( = 0, see also table 1). Shown
are streamlines of the convective ° ow on the outer spherical surface viewed from a 30 angle (a)
and viewed from the North Pole (b).

occurs at lowest Rc and is, therefore, physically realizable. The multiplicative con-
stants in these asymptotic laws can be found by extrapolating the results of numerical
calculations with ­ nite E. For a rotating spherical shell with ri=ro = 0:4 they are

Rc = 1:63E 4=3; mc = 0:74E 1=3; !c = 0:25E 2=3; as E ! 0: (3.5)

An example of the convection solution at E = 10 5, which shows streamlines on
the outer spherical surface, is displayed in ­ gure 1. More details are given in table 1.
These solutions are new, although their behaviour was already qualitatively well
understood: they were computed for this paper in order to establish the asymptotic
behaviour at small E. The convection is in the form of nearly two-dimensional rolls
(Busse’s columnar rolls) aligned with the axis of rotation and located and localized
at higher latitudes with a weak phase shift.

Nonlinear calculations have been performed to obtain the corresponding weakly
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nonlinear asymptotic law for the amplitude of convection, which is

U = 20:1(RE4=3 1:63)1=2 =d; (3.6)

where U is now de­ ned precisely as the average speed of convection over the spherical
®uid shell V :

U 2 =

Z

V

juj2 dV

Z

V

dV: (3.7)

We know the approximate ®ow speed in the Earth’s core, so it is useful to rearrange
(3.6) to give the corresponding Rayleigh number:

RU =
U d

20:1

2

+ 1:63 E 4=3: (3.8)

The corresponding dominant wavenumber and frequency are only slightly modi­ ed
by the nonlinearity. Similarly, a weakly nonlinear asymptotic relation for the total
convective heat ®ux H at the outer spherical surface can also be obtained

H = (4 r2
0KT)

¢T

d
3:72 10 2(RE4=3 1:63); (3.9)

where KT is the thermal conductivity, and ¢T is the superadiabatic temperature
di¬erence across the ®uid shell.

These asymptotic laws can be used to extrapolate the results to low Ekman num-
ber, when the length-scales are much too small to be simulated numerically. Molecu-
lar di¬usivities ( = = 10 6 m2 s 1) give E 10 15 in the Earth’s core, turbulent
values ( = = ) give E 10 10. Taking d = 2 106 m and = 1 m2 s 1 (q = 1)
we obtain for E = 10 15

Rc = 1:6 1020; L = 27 m; T = 104 s; for E = 10 15; (3.10)

where L is the horizontal scale of convection rolls and T is the period of oscillation
(or azimuthal drift), both of which are extremely small, and, for E = 10 10,

Rc = 3:5 1013; L = 1:3 km; T = 3:4 106 s; for E = 10 10; (3.11)

which still gives small-scale, rapidly ®uctuating convection for core parameters.
If we further assume that the weakly nonlinear expressions (3.6), (3.9) remain

valid for strongly nonlinear convection, we may estimate the size of the Rayleigh
number and the convective heat ®ux. Taking a typical core ®ow speed estimated
from geomagnetic secular variation to be U = 10 4 m s 1, we can use equation (3.8)
to estimate the Rayleigh number RU = 1022 for E = 10 15 and RU = 2:2 1015

for E = 10 10. Note that in both cases the required Rayleigh number is 60 times
critical, because both R and Rc scale with the same power of the Ekman number.

These numerical estimates are presented here to demonstrate the extremes of scale
that arise in non-magnetic convection. Their relevance for the Earth’s core is dis-
cussed in x 7; they are only given here for comparison with magnetoconvection and
full dynamo calculations.
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4. Spatial, temporal and amplitude scales with a strong toroidal ¯eld

We now assume the ®uid is permeated by an axisymmetric magnetic ­ eld with both
toroidal and poloidal parts:

B = B0( PBP + BT); (4.1)

where BT is the toroidal part and BP the poloidal part, scaled so that jBPjm ax =
jBTjm ax = 1. Further, we assume that B has dipole symmetry (see, for example,
Gubbins & Zhang 1993)

(Br; B ; B )(r; ; ) = ( Br; B ; B )(r; ; ): (4.2)

This imposed ­ eld is supposed to represent the main dynamo-generated ­ eld in the
Earth’s core, but the equations are only self-consistent if we suppose the ­ eld is
maintained by some external source, because we are not solving the full dynamo
equations. Any axisymmetric toroidal ­ eld BT can be written in the form

BT =
X

l;n

gln
@Gln( ; r)

@
^; (4.3)

where gln are real constants and Gln( ; r) are solutions of Helmholtz’s equation

( 2
ln + r2)Gln( ; r) = 0; (4.4)

which have the form

Gln( ; r) = Pl(cos )[jl(ri ln)nl(r ln) jl(r ln)nl(ri ln)]; (4.5)

where Pl(cos ) is the Legendre function, jl(r ln) and nl(r ln) are spherical Bessel
functions of the ­ rst and second kinds, and the ln are determined by

jl(ri ln)nl(ro ln) jl(ro ln)nl(ri ln) = 0; (4.6)

with

0 < l1 < l2 < l3 < ; l = 1; 2; 3; : : : : (4.7)

Similarly, any poloidal magnetic ­ eld BP may be written in the form

BP =
X

l;n

hln rr2Hln +
1

r

@

@r
r2 @Hln

@r
r̂ +

1

r

@

@

@(rHln)

@r
^ ; (4.8)

where hln are real constants and Hln( ; r) satis­ es

( 2
ln + r2)Hln( ; r) = 0; (4.9)

with ln being determined by

jl(ri ln)nl 1(ro ln) jl 1(ro ln)nl(ri ln) = 0; (4.10)

with 0 < l1 < l2 < l3 < . We mimic the geomagnetic ­ eld, which is dominated
by the largest scales, by choosing l = 1, n = 1 for the poloidal ­ eld and l = 2, n = 1
for the toroidal ­ eld. The problem of magnetoconvection, although the magnetic

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


908 K. Zhang and D. Gubbins

(a) (b)

Figure 2. The large spatial scale and long time-scale convection in a rapidly rotating spherical
° uid shell with ri =ro = 0:4 at E = 10 5 with imposed toroidal magnetic ¯eld at = 8, P = 0
(see also table 1). Views (a) and (b) as in ¯gure 1.

­ eld is imposed, contains many essential dynamic elements similar to those in mag-
netohydrodynamic dynamos (Proctor 1994; see also Fearn & Proctor 1983; Zhang &
Jones 1994; Zhang 1995a; Olson & Glatzmaier 1995, 1996).

When a strong magnetic ­ eld is imposed onto the convection system all the time,
the dynamical role of viscosity can be taken up by the magnetic force. This can easily
be seen by taking the radial component of the vorticity equation from (2.5),

r
@u

@z
r ((r B ) B ): (4.11)

Taking @=@z = O(1) together with Ohm’s law yields an estimate L = O(d ·), where ·

is the Elsasser number with B0 based on an average magnetic ­ eld. For a su¯ ciently
strong imposed ­ eld, · = O(1), the fundamental asymptotic laws for convection
(3.3) are replaced by

Rc = O(E 1); mc = O( · 1); !c = O(1); as E ! 0: (4.12)

The convection is large scale and slowly varying on the di¬usion time-scale, in
sharp contrast to non-magnetic convection (3.3). Furthermore, the Rayleigh number
required to initiate convection is much smaller (O(E 1), in contrast with O(E 4=3)
in (3.3), a factor of E 1=3 or 105 for molecular values of the di¬usivities).

Again, the asymptotic laws can be veri­ ed and values placed on the coe¯ cients by
numerical simulation at relatively large Ekman numbers. For a purely toroidal ­ eld
with P = 0 and = 10 (which is based on the maximum value of jB j, equivalent
to · = O(1)), we obtain

Rc = 12E 1; mc = 1; !c = 8:3; as E ! 0; (4.13)

which should be compared with (3.5). An example of our convection solution for
E = 10 5 and = 8 is shown in ­ gure 2. It displays streamlines of the convective
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motions on the outer spherical surface, which should be compared with ­ gure 1 with
= 0. Details of the relevant parameters for ­ gure 2 are also given in table 1.
Nonlinear calculations at P = 0 (Zhang 1999) give the corresponding weakly

nonlinear asymptotic relation for the ­ nite amplitude of magnetoconvection corre-
sponding to (3.6):

U = 3(RE 12)1=2 =d; as E ! 0: (4.14)

Similarly, the relation corresponding to (3.9) for the heat ®ux H is:

H = 1:01 10 2(4 r2
oKT)¢T (RE 12)=d: (4.15)

With both linear and nonlinear asymptotic relations for E ! 0, we can again esti-
mate quantities in the Earth’s core by extrapolation using equations (4.13) and (4.14)
when the magnetic ­ elds are strong ( · = O(1)). We obtain, for molecular di¬usivi-
ties,

Rc = 1:2 1016; L = d = 2 106 m; T = 4 1018 s; for E = 10 15; (4.16)

which should be compared with (3.10); and, for turbulent values,

Rc = 1:2 1011; L = d = 2 106 m; T = 4 1012 s; for E = 10 10; (4.17)

which should be compared with (3.11).
The Rayleigh number required to produce a typical core ®ow speed of U =

10 4 m s 1 is

RU =
U d

3

2

+ 12; E 1; (4.18)

which gives RU = 1:3 1018 for E = 10 15 and 1:3 1013 for E = 10 10. Both
Rayleigh numbers are 100 times critical.

The interpretation of these numbers for the Earth’s core is postponed to x 7. We
emphasize here the huge contrast between the spatial, temporal and amplitude scales
obtained at · = 0 (equations (3.10) and (3.11)) and at · = O(1) (equations (4.16)
and (4.17)). The smaller the Ekman number, the larger the scale disparities; they
are a fundamental characteristic of magnetohydrodynamics in the Earth’s ®uid core.
It is worth noting that these scale disparities are removed almost entirely by hyper-
viscosity at E 10 6 (Zhang & Jones 1997): the problem is simply not addressed by
the current generation of numerical dynamo simulations employing hyperviscosity.

5. Spatial, temporal and amplitude scales with
the e® ect of a poloidal ¯eld

A strong-­ eld dynamo satisfying the Taylor constraint (1.2) is stable if small pertur-
bations lead to small changes in the system. Perhaps, intrinsic instability explains
why one cannot obtain a strong-­ eld dynamo numerically (see, for example, Fearn &
Proctor 1987). We now illustrate a possible instability with two di¬erent calculations
(linear and nonlinear) with an imposed magnetic ­ eld (4.1) that includes a poloidal
component ( P 6= 0).

First, we investigated the linear instability of the magnetoconvective system by
including a small poloidal magnetic ­ eld while keeping the toroidal ­ eld unchanged

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


910 K. Zhang and D. Gubbins

ER c

0

C

- 5

- 10

0.05 0.1 0.150.0

10

5

e P

Figure 3. The scaled critical Rayleigh number, ERc , and the corresponding drift rate C are
plotted against P at E = 10 4 . The primary features of this graph are independent of the
Ekman number, provided it is small, because of the asymptotic forms (4.13). Reproduced from
Zhang & Gubbins (2000) with the permission of Blackwell Science Ltd.

(Zhang & Gubbins 2000). We calculated about 30 solutions at small Ekman number
while increasing P gradually from zero. We found a dramatic fall in critical Rayleigh
number with P (­ gure 3): the product ERc falls by a factor of 10 as P increases
from zero to 0:07, still a very small poloidal ­ eld. When the Ekman number is very
small, this represents a huge fall in Rc itself: a factor of 1016 for E = 10 15 and
1011 for E = 10 10. Negative values of Rc correspond to convection driven by the
imposed ­ eld. Such instabilities could not persist inde­ nitely for a dynamo-driven
­ eld because they draw energy from the imposed ­ eld rather than the buoyancy
force, but they could be transients in a full dynamo calculation. The point Rc = 0
could, therefore, signify an upper bound on the strength of the generated ­ eld. The
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(a) (b)

Figure 4. Large spatial scale and long time-scale magnetoconvection at E = 10 5 with both
toroidal and poloidal magnetic ¯elds imposed: = 10, P = 0:017 (see also table 1). Views (a)
and (b) as in ¯gure 1.

corresponding drift rate of the rolls changes from positive (eastwards) to negative
(westwards) as the poloidal ­ eld increases. The pro­ le of convection for P = 0:017
is shown in ­ gure 4; numerical values are given in table 1.

These results show that linear magnetoconvection can be highly and critically
sensitive to small variations in poloidal ­ eld when the Ekman number is small. It
suggests that the amplitude and pattern of nonlinear convection, which depends on
the di¬erence (R Rc) (for example, (4.18)), will change dramatically in response
to small variations in poloidal ­ eld. This in turn means that the magnetic Reynolds
number Rm will change dramatically in response to small variations in poloidal ­ eld,
so that if the ­ eld were dynamo-generated rather than imposed we could expect small
perturbations in magnetic ­ eld to lead to much larger ones, or even a completely
di¬erent nonlinear solution: typical characteristics of a highly unstable system. We
have suggested, on the basis of this result, that a steady convection-driven dynamo
will not be stable if the dynamic contribution from the viscous term in equation (1.1)
is neglected by enforcing (1.2) (Zhang & Gubbins 2000).

The second analysis is to integrate the fully nonlinear equations (2.5){(2.7) numer-
ically for ­ xed Rayleigh number R and toroidal ­ eld with and without the poloidal
­ eld. It should be noted that the fully nonlinear magnetoconvection solution with
both the toroidal and poloidal ­ eld is reported here for the ­ rst time, but the lin-
ear stability calculations have been described in Zhang & Gubbins (2000). A more
detailed analysis of the nonlinear problem will be reported in a future paper. The inte-
gration always starts from a random initial condition. For R = 2:2 104, E = 10 3,

P = 0, the ­ nal equilibrium solution after a few magnetic di¬usion times takes
the form of steadily drifting magnetoconvective waves with constant amplitude ®ow
and magnetic ­ eld; their phase speed is approximately predicted by linear analy-
sis (C in ­ gure 3; see, for example, Zhang (1999)). The convection is again nearly
two-dimensional because of the Proudman{Taylor constraint.

We repeated the calculation with a weak poloidal ­ eld ( P = 0:017), keeping every-
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Figure 5. (a) Heat ° ux at the outer surface (solid line), the leading coe± cient of axisymmetric
toroidal ¯eld (dot-dashed line), and poloidal magnetic ¯eld (dashed line) plotted as a function
of time for nonlinear magnetoconvection with R = 2:2 104 , = 10, P = 0:017 and E = 10 3 .
(b) Mean toroidal kinetic energy (solid line) and mean poloidal kinetic energy (dashed line)
plotted as a function of time for the same solution.

thing else the same. It changed the solution completely; the constant-amplitude trav-
elling wave, which is steady in a corotating frame of reference, is replaced by vacillat-
ing magnetoconvection with large-amplitude variations in time. The time variation
of the solution is displayed in ­ gure 5, where the kinetic energy of mean toroidal
and poloidal convective motions, heat ®ux and dominant coe¯ cients for the induced
axisymmetric toroidal and poloidal magnetic ­ elds are plotted as functions of time.

6. The amplitude of ° uid ° ow required to generate magnetic ¯eld

Further evidence of potential instability arises from kinematic studies of the geody-
namo in which the ®uid ®ow is ­ xed, decoupling the induction equation (2.7), which
may be solved for B . The problem is linear and, when the ®ow is steady, presents
an eigenvalue problem for the critical magnetic Reynolds number Rc

m with B as the
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eigenfunction. The solution for B can be very highly sensitive to the form of the
chosen ®ow u (Gubbins et al . 2000a), often to the extent that dynamo action fails
completely after a small change in ®ow. This result parallels our ­ ndings for magne-
toconvection to some extent, where the convective ®ow u changes dramatically for
a small change in applied ­ eld B . The nonlinear dynamo, in which the ­ eld is self-
generated, would, therefore, seem to be subject to a double instability, with small
variations in magnetic ­ eld producing large changes in ®ow, and small changes in
®ow producing large changes in the ­ eld.

The kinematic dynamo problem is linear and, therefore, relatively easy to solve
numerically, yet there are very few examples of steady ®ow in a sphere generating
magnetic ­ eld, and almost no examples of steadily drifting convection acting as a
dynamo. This suggests that time dependence of the ®ow is, perhaps, an important
ingredient for dynamo action. To test the e¯ ciency of steady ®ow in generating
magnetic ­ eld, Gubbins et al . (2000a) set up a two-parameter class of ®uid motions
in a sphere that contained a small number of dynamos ­ rst found by Kumar &
Roberts (1975) (see also Hutcheson & Gubbins 1994; Sarson & Gubbins 1996) and
others found by Love & Gubbins (1996).

The ®ows comprise large-scale convective rolls with m = 2, di¬erential rotation,
and meridional circulation:

u = 0t0
1 + 1s0

2 + 2s2c
2 + 2s2s

2 ; (6.1)

where tm
l , sm

l are toroidal and poloidal vector spherical harmonics,

tmc;s
l = r [tmc;s

l (r)P m
l (sin )[cos; sin](m )er]; (6.2)

smc;s
l = r r [smc;s

l (r)P m
l (cos )[cos; sin](m )er]; (6.3)

er is the unit vector in the r direction and superscripts `c’ and `s’ denote cosine
and sine, respectively. The ­ rst harmonic in (6.1) represents di¬erential rotation,
the second represents meridional circulation, and the last two represent convective
overturn. They provide what is thought to be the minimum complexity required to
generate a magnetic ­ eld possessing the basic features of the Earth’s magnetic ­ eld
and to mimic convection in a rotating sphere.

The scalar functions were chosen to give a u that is di¬erentiable at the origin,
and to be zero with zero stress on the outer boundary:

t0
1(r) = r2(1 r2);

s0
2(r) = r6(1 r2)3;

s2s
2 (r) = r4(1 r2)2 cos(p r);

s2s
2 (r) = r4(1 r2)2 sin(p r):

9
>>>>=

>>>>;

(6.4)

The ®ows are parametrized by the fraction of energy in the di¬erential rotation
(D), meridional circulation (M ), and convection (C = 1 jDj jM j). Solutions
to the induction equation with this ®ow separate into four symmetries, the dipole
and quadrupole solutions referred to in x 3 for convection, and two further solutions
characterized by odd azimuthal wavenumbers (the so-called equatorial dipole and
quadrupole solutions).

Gubbins et al . (2000a) found that only 36% of the ®ows de­ ned by the two param-
eters D and M generated magnetic ­ elds with dipole symmetry, and that these
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®ows were con­ ned to seven separate zones in (D; M ) parameter space. Surprisingly,
®ows in di¬erent zones often generate magnetic ­ elds with similar morphologies. The
boundaries of these zones are characterized by small-scale magnetic ­ elds and large
critical magnetic Reynolds numbers, where the ®ow either concentrates the ­ eld into
very narrow bands producing di¬usion, or expels it from the sphere with consequent
loss of dynamo generation. Within any zone, it is possible to change the ®ow param-
eters considerably without changing the qualitative nature of the dynamo action, yet
there are also places where a tiny change in ®ow will change the solution completely.

In a second study, Gubbins et al . (2000b) explored other symmetries and found
that nearly half of the ®ows generated ­ elds with at least one symmetry, some could
generate two or more symmetries with di¬erent Rc

m , and some could produce two
di¬erent symmetries with the same Rc

m . This last case delineates a boundary in
parameter space that separates physically realizable solutions: on this boundary,
an in­ nitesimal change in ®ow parameters would change the entire nature of the
generated ­ eld. Flows with D > 0, which correspond to primarily westward ®ow
at the surface of the sphere, generated axial dipole ­ eld solutions that were almost
exclusively steady. A very small, but perhaps signi­ cant, proportion of the ®ows
produced oscillatory solutions.

For some ®ows, the critical magnetic Reynolds number was found to depend very
sensitively on changes in the ®ow: by a factor of 3 with a 0.1% change in ®ow and
with the appearance of asymptoting to in­ nity with a ­ nite change in one of the
®ow parameters (D or M ). These rapid changes occurred on the boundaries of zones
of dynamo action, and within zones where the steady solution is replaced with an
oscillatory solution for a very small interval in M : 0:010 < M < 0:002 (Gubbins
et al . 2000a).

These kinematic studies may have implications for the full nonlinear dynamo prob-
lem. A time-dependent solution will explore a space of ®uid velocities. The obser-
vation that the Earth has possessed a non-oscillatory magnetic ­ eld with dipole
symmetry for most of its history strongly suggests that the ®ow has a permanent
characteristic like the D > 0 `westward drift’ of this model. Another observation,
that it reverses occasionally, suggests that the ®ow may occasionally range into a
region where another symmetry is generated, or an oscillatory solution is preferred.
The third possibility is that the ®ow takes a form that cannot generate magnetic
­ eld, or Rc

m increases dramatically, making dynamo action ine¯ cient. This strong
dependence of the dynamo action on the precise form of the ®ow is a further source
of instability in the full nonlinear dynamo.

7. Discussion

This paper was prompted by two developments: the theoretical result that strong-
­ eld dynamo models often collapse and lead to non-magnetic convection, and the
observation that the geomagnetic ­ eld also appears to have su¬ered frequent collapses
in the form of excursions: large departures from the axial dipole form and order-
of-magnitude falls in strength. Taken together, these results make it important to
understand the stability of the strong-­ eld dynamo in the small-Ekman-number limit,
the only model that can explain the geomagnetic ­ eld in its present form.

Instability of the strong-­ eld dynamo at small Ekman number presents very major
numerical di¯ culties. We have two choices: either assume the strong-­ eld dynamo is
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stable and compute solutions at modest Rayleigh number and small Ekman number
(but recent calculations suggest this does not work), or resolve the weak-­ eld solu-
tion that may develop if the dynamo collapses. The second alternative is safe but
impossible for small Ekman number. Our estimates of critical Rayleigh numbers in
xx 3 and 4 di¬er by a factor of 7E 1=3 (cf. (3.5) and (4.13)), or 7 105 or 3 104

depending on whether molecular or eddy di¬usivities are used. Starting a strong-­ eld
simulation with a Rayleigh number less than several thousand times critical could
lead to the convection shutting down completely if the ­ eld dropped and Rc rose
to exceed R. Even with a high value of R, we would have to resolve small length-
scales (m = 70 000 or 1600) and, even more seriously, very short time-scales. Such a
numerical calculation will remain impossible in the foreseeable future.

Our main hope for understanding the geodynamo must rely on extrapolations of
convection-driven dynamo solutions to small Ekman numbers, similar to those in
(3.6) and (4.12). We do not yet understand this extrapolation because we do not
understand the implications for magnetoconvection when the magnetic ­ eld is self-
generated: the dynamo instability and its e¬ect on convection has not been studied
simply because most convective ®ows fail to generate a magnetic ­ eld. Furthermore,
the numerical calculation is intractable even at modest values of the Ekman number.
At E = 10 6, for example, we would have to resolve wavenumbers out to m = 200
(double the expected wavenumber in order to include all primary convective modes)
with a time-step ¢t < 10 6 di¬usion times in order to resolve the drift frequency of
the rolls (10 4). The disparity of scales shown in table 1 explains why all the recent
geodynamo models (see, for example, Sarson et al . 1998; Olson et al . 1999; Katayama
et al . 1999) have di¯ culty in reaching E < 10 4. It is evident that E 10 4 is not
su¯ ciently small for the results to be extrapolated to the Earth’s core.

A simple way of removing the scale disparities is to introduce hyperviscosity, which
is related to the idea of local turbulence and cascades in atmospheric dynamics. There
are two objections to the application of hyperviscosity to the Earth’s core. The ­ rst
is the lack of an established turbulent MHD theory. The second, and more important,
objection is that the dynamics is fundamentally di¬erent from that of the atmosphere.
The dynamo problem operates on such a long time-scale that the e¬ect of the inertial
term in (2.1), [u ru], is, dynamically, of secondary importance. Regardless of the
amplitude of convection, the governing equation of motion is e¬ectively linear when
and where the generated magnetic ­ eld is weak. In order that convection takes place,
the scale of motion must be su¯ ciently small, as clearly shown by equation (3.1).
The dynamic role of viscosity, as explained by Chandrasekhar (1961) (see also Zhang
& Busse 1998), is to provide the frictional force necessary to o¬set the Coriolis force
to allow convection. In atmospheric dynamics, or convection in the form of thermal-
inertial waves, the inertial term u ru sets up the turbulent energy cascade, and
viscosity plays its conventional role of dissipating the smallest length-scales.

Our ideas about the instability are based on magnetoconvection with a constant
applied ­ eld and kinematic dynamos with constant velocity; we do not know the
implications of time-varying applied B or u for either case. Indeed, the comparative
ease of ­ nding time-dependent dynamos over those with steady ®ow suggests that
time dependence is an important factor, and a time-varying magnetic ­ eld may
change the nature of magnetoconvection. Both of these problems are under study.

How do we resolve these con®icts of scale? One possible scenario is that a dynamo
is neither strong nor weak: it swings between a strong-­ eld dynamo with scaling
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(4.13) and a weak-­ eld dynamo with scaling (3.5). Localized small-scale convection
with a weak ­ eld is ine¬ective in transporting heat, making it unstable to the dynamo
instability, while a strong-­ eld dynamo without viscous e¬ects appears to be unsta-
ble because of the high variability of Rc with magnetic ­ eld and of Rc

m with ®uid
®ow. Such vacillation between strong- and weak-­ eld states could provide a natu-
ral explanation for the repeated falls in ­ eld strength observed in the geomagnetic
­ eld.

Hollerbach (1997) has already outlined a similar idea, the existence of an inter-
mediate dynamo state (the semi-Taylor state) based on an ! dynamo model in a
rotating spherical system, which is between the strong- and weak-­ eld states. He
suggested that the semi-Taylor state, which describes a temporary departure of the
dynamo solutions from the strong-­ eld (Taylor) state and which has a ­ eld strength
intermediate between the strong- and weak-­ eld dynamos, might be relevant to geo-
magnetic excursions. The weak-­ eld and semi-Taylor states will be very di¯ cult
to distinguish from palaeomagnetic observations because it involves di¬erentiating
between a drop in ­ eld intensity of perhaps 100 and a drop by a factor of, perhaps, 5.
Although palaeomagnetism suggests the fall is by a factor of 5{10 during reversals,
temporal averaging and background noise prevent us from measuring any signal that
is signi­ cantly smaller than this. Furthermore, the dynamics depends mainly on the
toroidal ­ eld, which is not observable.

Finally, consider now how to apply such a model to the Earth. The present state
of the core and geomagnetic ­ eld corresponds to a strong-­ eld dynamo, in which the
primary force balance is between Coriolis and Lorentz forces. Three quantities should
have roughly the right order of magnitude: the convected heat ®ux; the ohmic heating
associated with the generated ­ eld; and the magnetic Reynolds number. There is no
problem meeting these three requirements with a strong-­ eld dynamo.

Core convection is determined not by an applied Rayleigh number but by the heat
®ux extracted through the core{mantle boundary as a result of mantle convection,
which remains constant on the time-scales of interest for the geodynamo. The heat
®ux must be greater than that conducted down the adiabatic temperature gradient
by the molecular value of the thermal di¬usivity; modern estimates place this at
about 1012 W (Labrosse et al . 1997). Any additional heat must be convected by
®uid motion.

Sustaining the geomagnetic ­ eld by dynamo action driven by thermal convection
requires a heat throughput equal to the ohmic heating multiplied by a thermody-
namic e¯ ciency factor of about 10 (Backus 1975; Hewitt et al . 1975; Gubbins 1977).
This result cannot be determined directly from the Boussinesq approximation, which
implicitly assumes that the ohmic heating is negligible; it is a more fundamental
result and, therefore, a good guide to the heat ®ux we should expect. If using turbu-
lent di¬usivities, we should also consider enhanced viscous and thermally di¬usive
contributions to the entropy, increasing the heat requirements still further. Com-
positional convection can reduce the requirements somewhat (Gubbins et al . 1979;
Loper 1978). These di¬erences are unimportant for the present discussion: the essen-
tial requirement is that core convection provides something like 1010{1012 W of heat
throughput.

The estimate (4.15) for the heat ®ux from strong-­ eld magnetoconvection yields
only 108 W. This is too small: it would indeed be amazing if the mantle were to
impose a heat ®ux equal to that required to maintain the adiabat (1011 W) plus
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just an additional 0.1% for the convection! Furthermore, there is a contradiction
with the ohmic heating associated with the applied ­ eld in the calculation, which
is signi­ cantly greater than 108 W. Most of the energy lost to ohmic heating comes
from the (unspeci­ ed) source of the applied ­ eld; the convection could not, therefore,
generate the imposed ­ eld by dynamo action, despite the ®uid ®ow being fast enough
to give a respectable magnetic Reynolds number.

In a steady dynamo, a simple integral of the induction equation shows that the
work done against Lorentz forces is equal to the ohmic heating; in a non-steady
dynamo, this balance must be maintained in the time average. In the magnetocon-
vection calculation there is an imbalance that will lead to decay of the ­ eld if the
extra source is removed. To model the Earth as it is today we must maintain the same
typical ®ow speed, U , while increasing the Lorentz force. This means a di¬erent force
balance, and probably a di¬erent Rayleigh number. We should not therefore rely on
(4.18) as a reliable estimator for the Rayleigh number, although its dependence on
E, crucial to the main argument of this paper, remains una¬ected.

Now, suppose the ­ eld collapses and a weak-­ eld regime, similar to non-magnetic
convection, is established. We imagine this weak-­ eld regime corresponds with onset
of an excursion, or one of the dips in relative intensity seen in many sediment records
(see, for example, Channel, this issue). The weak-­ eld dynamo does not scale to the
Earth easily. We have argued that small-scale convection is ine¯ cient at transporting
heat, a view sustained by (3.9), which gives only 107 W for typical present-day core
®ow speeds. However, we should not restrict U to present-day values when the core
is in such a dramatically di¬erent regime; we should instead adopt the correct heat
®ux and estimate the resulting ®ow, which varies as the square root of the heat ®ux
according to (4.15) and (4.18). Raising the heat ®ux to 1011 W increases the ®ow
speed by a factor of 100, to ca. 5 mm s 1.

Small-scale motions are also ine¯ cient at generating magnetic ­ eld. The typical
two-scale mechanism (see, for example, Busse 1975) generates ­ eld in a two-stage
process in which (1) small-scale ­ eld b0 is induced from large scale ­ eld ·B and (2)
large-scale ­ eld is induced by the average of the action of small-scale ®ow on small-
scale ­ eld, r (u0 b0). Balancing terms in the dimensionless form of the induction
equation, where the large length-scale is O(1), gives

Rm = O(l 1=2) 100m1=2 = O(E 1=6); (7.1)

where the constant factor appearing in (7.1) is justi­ ed from calculations for dynamos
generating large-scale (m = 1) magnetic ­ elds, which have Rc

m 100. For E = 10 15,
(7.1) gives Rm 3 104, and for E = 10 10 it gives Rm 3 104, and for E = 10 10

it gives Rm 4000. The corresponding ®ow speeds in the core are 0.3 m s 1 and
4 mm s 1, respectively. Thus, we must have fast core ®ow to continue to maintain a
dynamo when the ­ eld is weak.

There remains the problem of satisfying the ohmic heating associated with a small-
scale ­ eld. Using the same two-scale model as above, the ohmic heating (r b0)2

scales as R2
m (r ·B )2, an increase of a factor of 107 for molecular di¬usivities and

1600 for turbulent values. ·B is taken to be one-tenth the size of the present core ­ eld
in this regime. The molecular value is hard to reconcile: over 1013 W. However, the
ohmic heating for eddy di¬usivities lies within bounds.

In summary, the task of obtaining an Earth-like and self-sustaining numerical geo-
dynamo model remains a major challenge because of the scale disparities associated
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with an extremely small Ekman number E, which is not only the root of severe dif-
­ culties in modelling a convection-driven geodynamo but is also the key feature of
the dynamics of the Earth’s ®uid core.

D.G. was supported by NERC grant GR3/9741. K.Z. is supported by an NERC and a PPARC
grant. We thank C. A. Jones and R. Hollerbach for useful discussions.
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